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We introduce an equivalence relation on the family of ground states and 
generalize the Peierls and PJrogov-Sinai theory of phase transitions to systems 
with residual entropy. The idea consists in the replacement of the periodic 
ground states by equivalence classes together with an entropy factor. We apply 
these results to discuss the phase diagrams of diluted spin-l/2 systems. 
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1. I N T R O D U C T I O N  

Tile standard methods to prove the existence of phase transitions and to 
analyze the low-temperature phase diagrams are restricted either to 
ferromagnetic systems (Peierls' argument),  (1'2) to systems with a finite num- 
ber of periodic ground states (Pirogov-Sinai theory, (3) Slawny's asymptotic 
method(4)), or to systems with special properties (reflection positivity). 

In the case of systems with an infinite number  of periodic ground 
states no general results are known, although several models have been 
investigated. It appears that those systems, in particular the so-called 
frustrated models, (5) present a large variety of phase diagrams. There are 
many systems (such as the A N N N I  model, (6)) with an infinite number  of 
periodic ground states but vanishing residual entropy (entropy per site). 
They display very complicated phase diagrams, but most of the results 
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have been obtained by means of numerical analysis and are not always 
very convincing. In another class of models with interesting physical 
applications the number of ground states is so large that the system has 
finite residual entropy. These are sometimes called "superdegenerate" 
models(7-9); again, most of the results are obtained from numerical analysis 
and it seems that even their authors are not entirely convinced. 

A new approach has been recently developed (8'9) to study models with 
finite residual entropy. The basic idea is to introduce a concept of "restric- 
ted ensemble" and to replace the ground states in Pirogov-Sinai (PS) 
theory by measures over restricted ensembles. The applications, however, 
have been limited mainly to systems of the Widom-Rowlinson type, the 
interest of the authors being to prove the coexistence of the disordered 
phase with the ordered one, and furthermore a diluteness hypothesis was 
necessary. This hypothesis is not easy to check and no general condition on 
the interactions is known that would ensure the validity of this hypothesis. 

In this paper, we extend the usual Peierls and PS theories to models 
with finite residual entropy in the following manner. We first introduce an 
equivalence relation among the ground-state configurations (more 
precisely, among defect-free configurations) and we decompose the family 
of ground states into equivalence classes. We then expect, and prove, that 
at low temperatures each of the equivalence classes describes a possible 
equilibrium phase of the system. The idea of the proof is to replace the 
ground states in Peierls or PS theory by equivalence classes, together with 
an entropy factor that takes into account the degeneracy of the class. 

The equivalence relation that we introduce appears natural if one 
looks at standard models such as Ising models with nn magnetic and nnn 
nonmagnetic interactions. Indeed, for certain values of the chemical poten- 
tial the ground states are determined by the nonmagnetic interaction and 
at each occupied site the spin is arbitrarily + 1 or - 1 .  Therefore, in this 
case, it is natural to define the equivalence classes in such a way that two 
ground states that differ locally only by the spin orientation will belong to 
the same class; one then expects that the same picture will occur at low 
temperatures (as is the case for the Griffiths model(l~ 

This discussion leads us to define the equivalence relation in Section 3 
in such a manner that two ground states that coincide on some (sufficiently 
large) cube will belong to the same class. 

Although it seems to us that the existence of more than one 
equivalence class should be sufficient to establish the existence of a phase 
transition, and to conclude that there exist at low temperatures at least as 
many phases as the number of classes, we are forced to introduce further 
conditions. We first need a completeness condition (analogous to the idea 
of "reduced" models introduced in ref. 4 for ferromagnetic systems). 
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Furthermore, the systems to which our discussion applies at present are 
either symmetric (Section 4), i.e., all equivalence classes are related by sym- 
metries of the interactions, or factorizabte (Section 5). In the factorizable 
case, the phase transitions are not necessarily associated with spon- 
taneously broken symmetry. In Section 6, we apply our results to discuss 
the phase diagrams of different spin-1 models. 

2. BASIC  D E F I N I T I O N S  A N D  P R O P E R T I E S  

Let 1_ = Z v be a v-dimensional simple cubic lattice. With each site i ~ 1_ 
is associated a finite set ~2 i g [2 o, x(i) e ~2 i being the "value of the spin" at i. 
The configuration space is ~ = Q } .  For  any x =  {x(i)}i~teg2 and any 
A c 1_, x a =  { x ( i ) [ i e A }  eg2~=~2 a. The system is defined by the formal 
Hamiltonian 

H(x) = ~ ~bB(x) (1) 
B 

where the interaction (~B, with B a finite subset of 1_, is a real-valued 
function on g2 such that 

~=(x) = ~=(x=) 

We assume that the interaction has a finite range R, i.e., ~b~(x)= 0 if 

diam B = m a x  [[i- jH > R 
i , j~B 

where ][i[] = max1 ~ ~_< v [ikl. Therefore, the relative Hamiltonian 

H(x  ] y) = ~ [(bs(x) - ~bs(y)] (2) 
B 

is well defined for any x, y e~2 such that x = y a.e. The interaction is 
assumed to be periodic, i.e., there is a subgroup l_ of finite index of 1_ such 
that ~b~(x)= (~B+t(Ttx) with (T ,x) ( i )= x ( i - t ) ,  for any B, x and any t~ [. 

The main assumptions concerning the interaction are the following: 

C1. 
empty: 

C2. 
coordinate axes, i.e., 

05= {~bB} is an m-potential, (4) i.e., the following set G is non- 

G =  {sE~2 I ~b~(s)=rain ~b~(y), V B c  1_} (3) 
yE[2 

Take any cube q with vertices on 1_ and edges parallel to the 

q= { i e ~  j l l i - j l  r <~N/2} (4) 
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where jE  1_ if N is even, a n d j e  1_*, the dual of 1_, if N is odd. Then, for any 
x e/2 such that ~bB(x ) = miny~a ~bB(y ) whenever B m q :~ ~ ,  there exists 
some s e G such that Sq = Xq. 

Remark 1. Any se  G is a ground state in the usual sense, that is, 
H(x [ s) >10 if x = s a.e. Furthermore, s minimizes each ~bB separately, which 
means that there is no competition among the ~bB's. This does not imply 
that models with competing interactions or frustration are excluded from 
the discussion: In general, {~be} is different from the set of interactions {Jb} 
usually introduced for spin systems. This latter involves external fields, 
nearest and next-nearest neighbor interactions ..... and may exhibit 
frustration. It is only by suitably regrouping the bonds, i.e., 

~98= ~, d b / # { B ' l B ' ~ s u p p b }  
b:suppb c B 

that an m-potential arises. An example is shown in Section 6. In "natural" 
models with finite-range interactions such a regrouping is usually possible. 
Note that the original and regrouped interactions are equivalent in the 
sense that they give rise to the same relative Hamiltonian, 

H~(x l y )= HAx l y) 

and therefore the ground states and Gibbs states are the same. 

Remark 2. Another way to characterize the set G [-Eq. (3)] is to 
introduce the notion of a defect-free configuration (DFC). Let us consider 
any potential cb; the configuration x ~ (2 is defect-free if for any finite A c 1_ 
there exists a finite A ' ~  A and some x '~  (2 such that x~--XA and 

~bB(x')=min ~ ~b~(y) 
B c A '  ycg2  B ~ A '  

If f2 o is finite, the family of DFC is nonempty and for finite-range poten- 
tials any DFC is a ground state. Intuitively, a DFC is a ground state that 
does not contain an infinite defect surface stabilized by some boundary 
condition at infinity. It is conjectured that periodic ground states, if they 
exist, are DFC. It is clear that tf �9 is an m-potential, then G coincides with 
the set of DFC. 

Remark 3. Since DFC are not defined by means of the relative 
Hamiltonian, it is not obvious whether equivalent interactions lead to the 
same family of DFC. Therefore, if q~ and 4 '  are equivalent m-potentials, it 
is not clear whether G [ ~ ]  = G [ ~ ' ] .  In any case, both G[q~] and G [ ~ ' ]  
contain all the periodic ground states and their pointwise limits. (4) 



Phase Diagrams of Lattice Systems with Residual Entropy 117 

Moreover, if q~ is an m-potential and ~b' is obtained by regrouping the 
interactions ~b~, then ~@(x) and ~bB(x) are minimal at the same time, and 
G [ o ]  = ~ [ ~ ' ] .  

Remark 4. Condition C2 excludes potentials like Pecherski's 
counterexample(4): ~ = 7/2, s = {0, 1 }, G defined by the condition that on 
each unit square q, Sq is one the following configurations: 

(~ ~ ) ( i  i ) ( I 0  11)(01 01)( i  : ) ( ~  ; )  

Remark 5. The set G is invariant under the symmetry group f# of the 
Hamiltonian. 

Remark 6. The relative Hamiltonian is unchanged if ~bB(x ) is 
replaced by Ce(x)-miny~8(y). In the forthcoming discussion we will 
therefore suppose that 

~be(x)~>0 and ~bB(s)=0 if s e G  

It follows from our assumptions, If2ol < oo and finite-range inter- 
actions, that 

inf inf ~bB(x ) = A > 0 (5) 
B x:  r  > 0 

In the following, we call an N-cube any cube of diameter (=side)  N, 
as given by Eq. (4). Let Q denote the family of all N-cubes with fixed 
N>~ R. With any x e f2 we associate 

Q:,= {q~Q l xq#Sq, VseG} (6) 

and IQxl denotes the number of cubes in Qx. 
We then have the following result: 

Proposition 1. For any s e G and x e t3 such that x = s a.e., 

H(x I s) >>. C IQxl 

with C=A/(N+ 1) ~. 

Proof. Let us regroup the interactions in N-cubes: 

(7) 

B ~ q  
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where n~ is the number of N-cubes containing B. Since CB>~O and 
Iq] = ( N +  1) ~, one gets 

Cq(x)>~ (N+ 1) 'max r 
B ~ q  

Using the independence of H(x[ s) from the regroupment and CB(s)= 0, 

H ( x ] s )  = y' ~ ) q ( X )  >lQxl A/ (N+ 1) ~ 
q: (pq(X) > 0 

Remark. Inequality (7) looks like Peierls' condition. It would, 
however, be misleading to give it this name, since in all the cases we are 
going to discuss G is an infinite set, and the inequality (7) does not guaran- 
tee that H(x [ s) increases if the domain where x differs from s increases. In 
the next section we introduce further restrictions, necessary to prove the 
existence of a phase transition. 

3. E Q U I V A L E N C E  R E L A T I O N  

If G is finite, the phase diagram at low temperatures is described by 
the theory of Pirogov and Sinai (PS) (3) together with the low-temperature 
expansion of Slawny/4) To extend the PS theory to the case of infinite G, 
we introduce an equivalence relation on G in such a way that the 
equivalence classes play the role of the ground states in the PS theory. 

We say that s, s '~ G are N-equivalent if there exists a finite sequence 
1 S 1 __ 2 S n 1 q 1, ' ' ' ,qn~ l eGsuch tha t sq l=Sq l ,  q 2 - - S q 2  ' ' ' ' '  qn = 

t ' �9 for n = 1 this means Sq = Sq for some N-cube q. S qn ~ 

Consider PN = :G (NIId(N) the partition of G into N-equivalence ( p J p = l '  
classes. If N' > N, then s ,,~ N' S' implies s ~ N S', SO that the partition PN' is 
finer than PN, i.e., for any p'  there is a unique p such that G(p N') ~ G(p N). It 
follows that d(N') >1 d(N), where equality holds if and only if PN' = PN" Let 

~min{N[ d(N')  = d(N)  for all N' > N} 
N o = ( + o e  

if this set is nonempty 
(8) 

otherwise 

We say that s and s' in G are equivalent, s ~ s', if s ~ Us' for any N. 
The number of classes d=d(No) is called the degeneracy of G, and 

G u P = P ( N ) =  { p}p=l  for N>>.N o. Note that N o is finite if and only if d is 
finite. In fact, log d~< (No + 1 )v log l~2ol. In the following, we consider only 
systems such that No is finite. 

D e f i n i t i o n .  Let q be an N-cube, with N>~ N o, and x s ~2. We call X q  

(and also q) p-correct if Xq = Sq for some s ~ Gp. We call Xq (and q) correct 
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if it is p-correct for some p. The family of cubes Qx [Eq. (6)] is thus the 
family of noncorrect cubes. 

Properties 

Property 1. Any s ~ G can be classified by looking at sq where q is 
any No-cube. 

Property 2. We have the following characterisation of the 
equivalence: We say that q c 1_ is an octant if for some j = (j~ ..... Jv) ~ 1_, 

q= {iEl-l i lR l j l  ..... ivR~jv} 

where Rk is one of the relations ~< and />. Then, s,-, s' if and only if there 
exist octants ql, q2 ..... q, and DFC s o =s,  s 1, s2,..., s"-1, s n = s '  such that 
s~ - l =  Sq~, i =  1,..., n. This comes from the fact that the limit of increasing 
sequences of N-cubes contains an octant. 

Property 3. G is finite if and only if every s in G is periodic, and in 
this case each class consists of a single configuration: this is the situation of 
the PS theory. Indeed, if G is finite, the periodicity of the interaction 
implies that every s ~ G is periodic. Now let G be infinite and suppose that 
all the configurations in G are periodic. Then G contains an infinite 
sequence of periodic ground states {s =} with increasing period which 
converges pointwise, i.e., there exists a configuration s such that for any 
isl_, s~(i)=s(i) if c~ is large enough. Now, seG, since for any B, 
qtB(s ) = ~bs(s ~) = 0 for suitably large c~. According to the assumption, s is 
periodic: there is a subgroup []-(s) of I_ such that s(i+t)=s(i),  tEl_(s). 
Given c~, consider the point i(c 0 in the positive octant such that 
Iri(c~)[[ =min i  {[[ill ls=(i)r Due to the convergence, Ifi(c0/--* oo as 
c~--.oo. Let us define a new sequence of periodic ground states 

T,~=)s j, where t(c~) e l_(s) n [, (i(c~) - t(c~))k ~> 0, and 

rli(c~) - t(c~)lt = rain{ Ili(c~) - tit I t e  l_(s) ~ i', tk ~< i(c~)k } 

There', exists a subsequence of {U} that converges to a limit s' such that s' 
coincides with the (periodic) s on: one octant and s; C s~ for some i at a 
finite distance of the origin. Therefore s' cannot be periodic. 

Property 4. Let g ~ f# be any symmetry of the Hamiltonian; then 
gGp = Gp, .  If the number of classes is finite, then each class is invariant 
under a subgroup of [ with finite index. For  systems with a finite number 
of classes we thus have a scheme analogous to PS, with classes instead of 
ground states. 

Property 5. Let N > N o and x e t'2 such that the N-cubes q and q' are 
respectively p- and p'-correct with p vap'. Take any chain of N-cubes 
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{qi}7=~ such that qt=q, q,,=q', and qi+x=qi+ti, [ItiN=l. Then there 
exists some B c ~_ with the properties B c~ (uq~) r 25 and r > 0. Indeed, 
otherwise condition C2 would imply the existence of s ~, s2,..., sn~ G such 
that Sq= Xq~, i= 1, 2,..., n. Since q~c~ qi+~ contains an No-cube, we would 
get s I ~ s 2 . . . . .  s n and hence p = p' .  

Remark. Property 5 implies that there is an interface energy between 
nonequivalent DFCs. Observe that this is the only property that depends 
on C2. 

Condition C2 does not rule out the possibility of an interface energy 
between equivalent DFCs.  In order to make this remark precise, let us 
introduce ~(z) as the set of configurations with a finite number  of defects, 
i.e., 

~(f'  = {x  E ~ I H(x) = 2 C)B(x) < aO } 
B 

Furthermore,  let 

0 (z)= {xeOLx=sa .e .  for some seG} 

It is clear that f~(f)~ s but the relation 

~f)  = ~(s) (9) 

is not necessarily true. For  instance, consider the two-dimensional spin-1 
model of Section 6, defined by J/> 0, J + K~ < 0, K 2 < 0, and h = 0 in the 
domain of the parameters where IGI = oo and d = 4  (Fig. 5). Condition C2 
is satisfied. The class G~ is defined by configurations s such that s(i) is con- 
stant in each row, taking alternatively the value 0 and + or - .  The class 
G2 is obtained by translation of G~ ; the classes G3 and G4 are obtained by 
rotation by n/2 of G1, G2. Now ~(f)\~'~(f) is nonempty, since, e.g., the 
configuration 

+ + + + + + + 

0 0 0 0 0 0 0 

+ + + 

0 0 0 0 0 0 0 

+ + + + + + + 

is in ~(f)  but not in Q ( f ) .  In such cases there exist s and s', equivalent 
DFC,  and nonoverlapping N-cubes q and q' such that the configuration 

! Sq | Sq, cannot be extended to a defect-free configuration in G. In this sense, 
the class containing s and s' is not complete: we thus consider only 
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C-potentials, i.e., potentials that satisfy condition C2 and the following 
"completeness" condition: 

C. ~ is an m-potential, with N o finite; there is a partition ~ of [k into 
rectangular cells A~ with A~ = A o + t~, t~ E ~_, such that if A is any (finite or 
infinite) union of cells and x s f2 satisfies 

(i) qSB(x)=0 for all B c ~ A r  

(ii) Xq is p-correct for any N0-cube q in A 

then there exists s E Gp such that sA = XA. 
It is clear that the C-potentials satisfy (9). Also note that the condition 

(9) is similar to the condition introduced to prove the existence of a phase 
transition for ferromagnetic systems. (4,m 

P r o p o s i t i o n  2. Let ~o be a C-potential; then, for any class Gp 
has a nonvanishing entropy per site (residual entropy) either [Gp[ = 1 or Gp 

ap, where 

with 

1 
op = lira [Gp(A)] A~L T-~ l~ 

(10) 

@ ( A )  = {x ~ (2 A p 3s e Gp s.t. s A = x} 

Proof. Let us consider a periodic array of No-cubes separated by dis- 
tances larger than 2R. For  each cube q we can choose any s ~ Gp and define 
x u=sq. Condition C implies that x can be extended into a DFC. If 
IGpJ > 1, then due to the periodicity of r the limit (10) exists and is 
positive. 

Remark. If A0 contains more than one site, it is possible to consider 
the model defined by the lattice t ' =  {a} with ~ the center of the cell A~, 
and f2; = (2A0. In other words, we can always assume that the cells are the 
sites. 

4. P H A S E  T R A N S I T I O N S  W I T H  S P O N T A N E O U S  S Y M M E T R Y  
B R E A K D O W N  

4.1. Contours  

Let q5 be a C-potential such that the cells A n are the sites of L. For any 
x Ef2 (y) we define the boundary M x of x as the union of noncorrect 
N-cubes 

M ~ = U  { q [ q ~ Q x }  (11) 
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with 

N >  N1 = max{N0, R} (12) 

to be specified later. 
We then decompose Mx into maximal 1-connected (connected) 

subsets {M~}, where Ml ,  M= are r-connected if 

d ( M  1, M=)= min l l i -  jll <<, r 
iEMI 
jE M2 

A component M~ of M~ is called a contour of x. Any connected, finite 
set M c ~_ is a contour if it is a contour of some x s s Let M be a finite 
contour; we define Ext M and Intj M as maximal N-connected parts of 
M ~ = 0_\M, Ext M being the unique infinite component, and 

Int M =  U Intj M, V(M)  = M w  Int M =  (Ext M) c (13) 
J 

Let ~ x  = { M~ } be the family of contours of x s s The contour M e is an 
external contour of JPL x if M e ~ Ext Ms for all c~ ~/~. We denote by ~,ext the 
family of external contours. For  V c  k, let 

0r(V)= {is  VI d(i, W ) ~ r }  

We write 0( V) instead of ~?I(V). 

Propos i t ion  3. 
in Gp. 

Let X S ~  (f) be such that x = s  a.e. for some s 

(i) Let M be a contour of x. Then every N-cube q intersecting 
ext 0(Ext M) is p'-correct with a common p' ( p ' =  p if M s  JC/x )~ 

and every N-cube intersecting ~(Int jM) is pFcorrect with a 
c o m m o n  pj. 

(ii) For  every N-cube q that is not p-correct there exists an external 
contour M of x such that q c V(M).  

Proof.  (i) By definition, any N-cube q intersecting O(IntjM) is 
correct. Now take some i sO(Int sM);  then q is p(i)-correct [with p(i) 
independent of q] for any N-cube q~ i. Indeed, since N >  No, any translate 
of q by a unit vector that contains i is correct and of the same class as q. By 
repeated translation we can exhaust the set of N-cubes containing i. By 
definition, ~(Int s M) is N-connected, and this assures that p(i) is the same 
for all i s  3(Intj M). The same argument works for a(Ext M). 
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(ii) Any N-cube intersecting 

E x t ( x ) =  ("] E x t M  
M E .~{ext 

is p-correct. If q is not p-correct, then q c~ Ext(x) = ~ ,  i.e., 

q= U V(M) 
M � 9 1 6 2  TM 

e x t  and necessarily q ~ V(M) for some M e  J/{~ . 

With the above definition of contour, we obtain a decomposition of 
the relative Hamiltonian. 

Proposition 4. Let x ~ ~ such that x = s a.e. for some s ~ G. Then, 

where 

H(xls)= E HM(x) 
M �9 . ~ x  

/4M(x) =/-/M(xM) = E ~(X) 
B c M  

ProoL The condition N > R implies that any B such that ~bs(x) > 0 is 
inside at least one noncorrect cube. Therefore 

H(xl~)=EO.(x)= E O.(x)-- E E ~.(x) 
B B ~ M x  M E , M "  x B c M  

4.2. Peierls Argument 

The Gibbs state for a finite volume A ~ 0_ and boundary condition 
s ~ Gp is defined as the probability measure on 

~(sA,) = {x~ixA,=s~c} (14) 

given by 

t~A(XIs)=ZA(s) -1 exp[ - - f l  ~ ~bB(x)] 
B r ~ A ~  

Here 

x �9 Q(sA, ' )  B c~ A ~ $25 

is the partition function, with boundary condition s, and we recall that 
~B(s) = 0. 
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We want to estimate the probability that a given N-cube q ~ A is not 
p-correct, which we write # A ( X q ~ G p l  S). Taking N > N I  [Eq. (12)], it 
follows from (ii) of Proposition 3 that 

where 

#A(Xq q~ Gp I s) <~ ~" #A(M I s) (15) 
M: q ~  V(M)~  A ~cqN(AC ) 

~A(MIs )=  ~ #A(X[S) 
x e O(sA~') 
M ~ .~(exXt 

Given a contour M and A ' ~  M, the configuration y el2 A, is said to be 
compatible with M and s,, ,  which we write y ~ (M, sA,), if there exists an 
X~O(SA,,) such that M e  Jr xt and xA,= y. Notice that the couple (M,  y )  
with y E s M and y ~ (M, SAC) is a contour in the PS theory. 

We then have 

# A ( M  I S ) ~  2 e-#HM(x)ZA(s)-IZA\v(M)(X@SA ~) I~ ZId~ItjM(X) (16) 
XEF2M j 

x ~ (M,sa,) 

where, for x e f2M, 

I ] y E g21ntj M B ~ IntjM 
y @ x  ~ (M, sA c) 

Indeed, on the rhs of the above inequality, we have taken into account 
every configuration compatible with M and SAC and used the decomposition 
property (Proposition 4). An upper bound is obtained because in A/V(M) 
we allowed also for configurations that are not compatible with M and SAC. 
Furthermore, since N > R, for every x ~ O(SAc) such that M e  j#~xt and for 
any B such that B ~ M : / = ~  and B~M~'4:(25 we have ~b~(x)=0. 

The following proposition implies that the boundary conditions for 
ZA\V(MI and Z ail M correspond to defect-free configurations, provided that Int./ 

N is sufficiently large: 

Proposition 5. Let ~ be a C-potential, N>~R+ff~ with ~r>~N1, 
and M be a contour. For  any x~t ~ (M, SA~) with s ~ Gp, there exist s o ~ Gp 
and sJE Gpj such that 

xM(i)=s~ if i~Mandd( i ,  ExtM)<<.N 

xM(i) = sJ(i) if i ~ M and d(i, Intj M) ~< ~r 

sOc ~ SAC 
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Proof. Let Xef2(SAc) be any extension of XM such that M e J h ~  *t. 
Consider the environment of radius ~r of 0(Intj M), i.e., the set 

Aj= {i~ h l d(i, 0(Inb M)) ~< N } 

By Proposition 3, every _N-cube in A j i s  pFcorrect since it is inside a 
p/-correct N-cube. Moreover, N ~ > R + N  implies that any B such that 
B m A / #  ~ is inside a pj-correct N-cube, and hence ~bB(x ) = 0. Since q0 is a 
C-potential, there exists sJe Gpj such that s4j= XA; Take any ie  M with 
d(i, Intj M) ~< ?~. Then d(i, c~(Intj M)) ~< N, so that i e Aj and x(i) = sJ(i). 
The proof for i cM,  d(i, Ext M)~<N-, is similar. 

Remark. Denote 

Er(V)= {i~l_I d(i, V)<~r} 

the environment of radius r of V. If N > 2_N, then 

E~,(~(M")) = ~ E~(g(Intj M)) w E~(O(Ext M)) 
J 

is a pairwise disjoint decomposition, because d(Intj M, Intk M) > N (j-r k), 
d(IntjM, E x t M ) > N .  Consider the special case of Proposition5, when 
N >  2N, N =  R + N 1, and XM ~ (M, SAC) is such that s o E Gp and sJe Gp, all 
j. Then every N-cube in E~(~(MC)) is p-correct and thus ~b(B) = 0 for every 
B intersecting with ENL(r Since q5 is a C-potential, we conclude that 
there exists s'~Gp such that s '=s  in A c and S'=XM in 

EN,(O(MQ) n M = ~ N t ( M )  ~ ~R(M) 

This remark is the key to the Peierls argument. 

Defini t ion.  We say that the potential q5 satisfies the symmetry 
condition if all the classes are related by internal and/or translational 
symmetry, i.e., Gp = gp T,(p)GI, where gp is a pointwise transformation and 
t(p) ~ ~_. The translational component T,(p) is not unique; t(p) denotes a 
vector of minimal length. Let 

N2 = max IIt(p)ll 
p 

The Peierls argument applies to a C-potential cb satisfying the symmetry 
condition. Fix 

N >  2(R + N 1 + N2) = 2 (N+ N2) 
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Let McAWON(A" ) be a contour, seGl,  xM~(M,s.O, and s~ and 
sis Gpj the DFCs assigned to x, according to Proposition 5. Now, by this 
proposition and setting 7pj = gpjT,(pj), 

7pj~S]= T t(pj)gpjlsJE G 1 

coincides with 7zlx  on E~(O(Int. M--t(p.))) Due to the choice of N, these P/ J J " 
sets are disjoint for different j 's, and also disjoint from E~(~3(Ext M)). 
Hence, the preceding remark is relevant: There exists s' e G~ such that s' = s 
in A% s '=x  in t3R(V(M)), and s '=7~tx in OR((Inb M-- t (p j )  O. 

Since the 7pj are symmetries of the Hamiltonian, we have 

and in Eq. (16) 

Then 

, _ 1sJ~ ' O B (  S j )  = O B  -- ,(pj)t]Ypj } all B 

ZA\ v(M~(x | sac) = z~\ v(M~(s') 
z d i l t j M ( X  ) = Z dil (S']  IntjM - -  t(pj)*, ! 

Z A ( S )  = Z A(S') ~ Z A\ V(M)(S') ~I ZInt~,M-- t(pj)(St) 
J 

and the upper bound in (16) reduces to 

#A(M I s ) ~  ~ exp[-/~HM(x)] 
x ~  Y2M 

x ~ (M, SAC) 

~< max exp[--/?HM(X)] 1s g 
x~g2  M 

~< exp[lm[ (log IOol -/~C~)] 

In the last inequality we used Proposition 1. Finally, for any s ~ Gp the 
estimate (15) reads 

#a(xqCGp [s)~< ~ exp[lMI (log I~ol-/~C1)] 
M : q ~  V(M)  

~< ~ exp[- l ( f lC,  - C J ]  
I > ~ ( N + I )  v 

with a suitably chosen constant C2. Here, the usual exponential bound for 
the number of connected sets with given length is applied. The bound on 
the rhs is independent of s; by symmetry, it applies to any p and goes to 
zero with/~ going to infinity. This implies the following result: 
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Theorem 1. If the interaction is defined by a C-potential that 
satisfies the symmetry condition, then there exist at low temperatures at 
least as many phases as the number of classes. 

5. EXTENSION OF THE P I R O G O V - S I N A I  THEORY 

5.1. Perturbed Hami l tonian 

Let us consider a system with unperturbed Hamiltonian Ho defined by 
a periodic C-potential 45 (~ and let 

d 

 [Ho] = 0 
p = l  

We then introduce a perturbed Hamiltonian 

d--1 

H = H o +  ~ 2RHp=Ho+H'  
p = l  

where H'  completely splits the degeneracy between the classes, but preser- 
ves the degeneracy within each class. It is assumed that )~p are  sufficiently 
small compared to 

d (~  min ~b~)(x) 
B x : ~ ) ( x ) > O  

so that new DFCs will not appear, and 

C[H] = U ap, I=  {1,..., d} 
p ~ l  

The perturbations kip are defined by means of periodic C-potentials qs(p) 
whose range and period do not exceed N1=max{R(~ and which 
satisfy 

whenever s, s' e G[Ho] with s ~ s'. 
It is easy to construct such potentials: for example, take for {B} the 

family of N0-cubes, and define 

if xe = sB for some s e Gp 
otherwise 

The total interaction is OB = ~ )  + •p 2p0(8 p) = ~(ff) + O'B. 

822/52/'1-2-9 
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In the examples of Section6, the approach is different: the 
Hamiltonian is given, and is decomposed afterward into an unperturbed 
part and perturbations. 

5.2. Factor iza t ion  Cond i t ion  

The PS theory will be extended to periodic m-potentials q~o), which 
satisfy the following factorization condition: There is a partition of l_ into 
rectangular cells A~, ~_ = U~ A~, with A~ =Ao + &, t~e [, and a partition 
of ~2A0 

d + l  

= U 
p = l  

such that 
d 

G= U Gp, w h e r e  Gp= c~g2(p) (17) A n 
p = l  

and g2(P)A~ is related to ~2(AP0 ) by the translation t~. 
It is clear that s, s' ~ Gp implies s ~ s'; indeed, if s, s' ~ Gp, there is some 

s" G Gp coinciding with s and s' on different half-spaces. On the other hand, 
if s ~ Gp, s'E Gp,, with p r  then for any ~, s ~  r s]~, and thus an element 
of Gp c a n n o t  be equivalent with an element of Gp,. Therefore, the decom- 
position (17) is the decomposition of G into equivalence classes. If 
N~> 2 diam Ao, then any N-cube q contains some cell As, so that any s e G 
can be classified by inspecting Sq. This implies that No~<2diamAo. 
Clearly, q~(o)is a C-potential. The residual entropy, introduced in Eq. (10), 
is 

1 
#P =T~01 log I~<$0>1 (18) 

If A is a finite union of cells A~ and s is any element of Gp, then 

lira ZA(s)=exp{[A [ ~p} 
/ ~ o o  

In this section, we assume that the unperturbed potential satisfies the 
factorization condition. 

5.3. Contours  

In the PS theory "contour" means a couple whose first term is a set of 
lattice sites and the second is a configuration on this set. We adopt this 
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definition and we note that the concepts introduced in this section are 
defined in terms of Ho. The boundary of x E D (f) is now defined as the 
couple (A, xA), where 

A - My = ~ { A ~ [ A~ m q # ~ for some noncorrect N-cube q } 
c~ 

and N~> R + max{R, 2 diam Ao). 
A component M of Mx is one of its maximal connected subsets 

(clearly union of cells), and 

F= (m, x~)  

is a contour of x, M =  supp F. Any couple F =  (M,  xM) is a contour if it is 
the contour of some x in ~2. The boundary as a set of contours is 8x (or 8); 
Ext F, Intj F, V(F) are identical to Ext M, Intj M, V(M) introduced in 
Eq. (13). External contours are defined as in Section 4, and 8~ xt (or 8 ext) 
denotes the set of external contours of 8x (or 8). 

Proposition 3 remains valid, so that there is a unique equivalence class 
associated with Ext F and each of Intj F. We call F p a type p contour if 
Ext F is associated with Gp. Fp denotes a type p contour. The decom- 
position property (Proposition 4) equally holds. From Eq. (7), we have 

Ho(x [ s) >~ C' IM~[ 

5.4. Part i t ion Funct ions 

In what follows, A always denotes a finite union of cells A,. For an 
s ~ G[Ho], let 

g?(A Is )=  {X~g?IXAc=SA,, d(Mx, AC)> 1} 

The dilute partition function is defined by 

Z(A]~H, s) = ~ e ~g(xls) 
x~2(A Is) 

where H is the perturbed Hamiltonian. 
The factorization condition implies that the restriction of f2(A Is) to A 

depends only on the class Gp t o  which s belongs; also ~bs(s)=~bB(s' ) if 
s ~, s'. Therefore 

Z(A[flH, s )=Z(AI f lH ,  s') if s ' ~ s  
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Indeed, for any x e f2(A Is) and s ' ~  s, let 

x' = ~'x on A 
s' on A" 

Then x'eg2(Als')  and H(x ' l s ' )=H(xls) .  To see this, take any B (%B#0) 
such that B c~ A # ~b, B c~ A c # ~b. There exist ~ and ~', both equivalent to s 
and s', such that XB=~B and x ) = ~ ,  thus ~bB(x)= ~b~(~)= ~bB(g')= %B(x'). 
This holds because of: ( i )A being a finite union of cells; ( i i ) the fac- 
torization property; (iii) the definition of diluteness; (iv) the fact that the 
perturbation does not split the degeneracy within a class. 

Thus, the map is one-one from f2(A Is) onto (2(A Is') and keeps the 
energy unchanged. Therefore Z(A [~H, s) = Z(A [~H, s') = Z(AI~H, p), if 
seGp. 

Furthermore, for a contour F, let s(F) be any fixed DFC in the 
equivalence class associated with Ext F, and 

f2(F) = {x e ~2 [,~ex~_x -- F, x = s(F) on Ext F} 

The crystal partition function is 

Z(FI f lH)= ~ e ~tt(~l+(r)) 
x e Q ( F )  

Observe that this sum does not depend on the particular choice of s(F), 
although g2(F) does. This is due to the fact that the summation goes over 
configurations in /2in ~ r and ~b~(s) is the same for all s e Gp. 

The two kinds of partition functions are related through the equation 

Z(A I ~H, p) = ~ e sA(o'> 1-I Z ( r l  Bn) 
~ P ~ A  FEOP 

Here OP= {Fs} denotes a family of type p external contours, i.e., 
d(V(Fz), V(Fj))> 1 if i C j  and s(Fi)~G p for all i. Furthermore, (~P=A 
means that d(V(F3, A")>  1 for all i, and exp{SA(OP)} is the number of 
DFCs coinciding with a fixed se Gp in U~ V(Fz)u AC The argument of the 
sum represents a partial summation over all x e ~(A ] s) such that 8~t = 8 p. 

On the other hand, with x(F) any configuration whose unique contour 
is F, we have 

Z ( F I B H ) = e  " " ' )  Y~ e ~n(xlx(r)) 
x E ~2(F) 

where 

H(F)=H(x(F)Is(F))= ~, [CbB(x(F))-fbD(s(F))] (19) 
B ~  V ( F )  
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does not depend on the particular choice of x(F). Thus, 

Z(F I fill) = e-~H(r) [I Z(Intj F I fill, sj) 
J 

where sj is an arbitrary DFC  chosen from the equivalence class associated 
with Intj F. 

Denoting by Int (p) F the union of those Intj F that are associated with 
G p ,  w e  have 

d 

Z(rl fill) = e-amr) ~ Z(intCP) F t fill, p) 
p = l  

If Int Cpl F =  ~ ,  the corresponding term is 1. 
Now observe that, using the factorization condition, we have 

F e  ~P 

Then, introducing the normalized partition functions 

Z(A ] fill, p) = [ e x p ( -  IA[ ap)] Z(A ]fill, p) 

Z( rp I fill) = {exp[ - ]V(FP)I  Cp] } Z(F p [ fill) 

we obtain the recurrence relations 

2(A I fill, p) = ~ I1 4( r l  #H) (20) 
# P c d  FeOP 

2(r  I pH) = e x p [ - ~ # ( r ~ ) ]  lq Z(Int(q) Fp ] fill, q) (21) 
q 

where 

f I (F;)= H(FP)+ fl l [[supp I'Pl ap + ~ lInt(q) FPl (ap-aq)]  
q 

(22) 

5.5. C o n t o u r  M o d e l  

the sense of PS, 
respectively, as 

and 

Let Up denote the family of type p contours. With F a r-functional in 
we introduce the crystal and dilute partition functions, 

Z ( f ' l  F)=e l.(rl ~ e-e(a) (23) 
~3 c I n t  F 

Z(A [ F) = ~ e -F(~) (24) 
c~c A 
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Here, ? ~ (gp is a set of pairwise compatible contours (not necessarily exter- 
nal), i.e., d(supp F, supp F ' ) >  1 if F, F ' e t ?  and F # F ' ;  ~3 c A with A c k 
means that d(V(F), A c) > 1 for all Fe~?, and 

F(O)= ~ F(F) 
F ~ c  q 

The partition functions obey the recurrence relations 

d 

Z(r lF)  = e - ~ ( n  I 1  Z(Int(q) r IF) 
q=l (25) 

Z(A I F) = ~ FI Z ( r l  r)  
c3PcA FcOP 

where c~ p denotes a set of type p external contours, as earlier. 
The contour model defined above through the partition functions does 

not differ from the one used in the original PS theory. Therefore, the results 
obtained therein for the existence and properties of the pressure and 
correlation functions will not change. When establishing the connection 
between the spin and the contour models a minor change will be necessary: 
an extra term -ffp/fl has to be introduced in the expression of the energy 
density. 

5.6. Phase Diagram at Low Tempera tures  

We define a contour functional on Cgp by 

d 

O(F) = H(F) + fl-~ Isupp FI tTp -- Z (hq - hp) lint (q) FI 
q = l  

=/~(F)  - ~ lint (q) F] [ (hq - f l -  laq) - (hp - f l -  lap) ] 
q 

Here H(F) is given by (19), and hq is the specific energy of any s e Gq with 
respect to the perturbed Hamiltonian. In fact, since ~b~)(s)= 0, 

For H'- -0 ,  we find 

and 

1 
hq ~- Jimao -~[ HtA(S) 

~(F) = Ho(F ) + f l - i  [supp FIap  

~(F) ~> p ]supp F] 
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with p = c'+ fl lap. If H ' r  0, we still have 

H'(F)-- ~, (hq- h;) ] Int(q~ F] ~ e(2) [supp F] 
q = l  

where e(2) ~ 0 as 2 = (21 ..... 2e_ l) --* 0. 
Hence, for sufficiently small 2 

~(F) >~ 1/2p Isupp FI 

i.e., ~ is a r-functional. (3) 
Consider now the contour models defined on ~fl ,---, Za by using the (so 

far unknown) z-functionals F 1,..., Fd, respectively. The pressures 

rc(Fp)= lira 1 A ~ oo I--~ log Z(A ] Fp) (27) 

exist for sufficiently large ~. We are looking for {Fp} that solve the 
equations 

2(v l flH)=e b'''"trl Z(F I F,) (28) 

for all F ~ Zp, p = 1 ..... d. Here 

(29) 

where c~ is fixed by the condition 

min bp = 0 
l<~p<~d 

At this point we can follow the proof given in ref. 3 to conclude the 
following result. 

Theorem 2. If the interaction is defined by a C-potential with the 
factorization property, the low-temperature phase diagram is given by the 
Pirogov-Sinai theorem (3) with ground states replaced by classes. 

6. M A G N E T I C  LATTICE GAS M O D E L  

To illustrate the definitions and to present some applications of our 
results, we consider a magnetic lattice gas model on the two-dimensional 
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square lattice Z2: Each lattice site i can either be empty (xi=0) or 
occupied by a particle with spin up or spin down (x~= _+1). In the 
language of binary alloys, a site is empty or occupied with an atom of type 
A or B. This corresponds to the so-called annealed dilution. We assume 
that there is a magnetic pair interaction J between nearest neighbors (nn) 
and nonmagnetic pair interactions K1 between nearest neighbors and K 2 

between next nearest neighbors (nnn). The density of particles is charac- 
terized by the chemical potential # and the system is subjected to a magnetic 
field h. 

Written in the usual way, 

H= -~(Jxixj+Klx~x~)-  Z K2xZxZ-~(hxi+l ~x2) (30) 
n n  n n n  i 

For general values of the five parameters the interactions do not form an 
m-potential (they do so if, e.g., all the five are positive). We may, however, 
rewrite H in the form 

H(x) = Y~ O.(x) 
B 

where B are unit squares, and 

~bs(x)=-1/2 ~ (Jxixj+K ,.2,~2~_ l~i.~jt 2 K2x~x~ 1/4 y' (hxi+#x 2) 
n n c B  n n n c B  i 6 B  

(31) 

This r already satisfies condition C1 for any choice of the parameters. A 
periodic s t  G can be obtained, for example, by minimizing ~bB(x ) on a 
square B and by repeating periodically (with period 2) the resulting con- 
figuration: Due to the reflection symmetry of H, this yields a configuration 
that minimizes all the ~bB simultaneously. 

This model with K2 = 0 has been extensively studied in the literature 
by means of series expansions, mean field approximations, renormalization 
group techniques, and Monte Carlo methods. However, there are very few 
rigorous results, except at low temperatures for those values of the 
parameters where Pirogov-Sinai theory applies (finite number of ground 
states). 

This model has many physical interpretations and has been used to 
discuss He3-He 4 mixtures, ternary mixtures, amorphous ferromagnets, and 
diluted magnetic alloys that undergo crystallization as well as an 
order-disorder phase transition. The extended Hubbard model in the 
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Table I 

135 

J KI h 

Griffiths(107 0 > 0 0 
Bernasconi and Rys (12~ 0 > 0 # 0 
Capel (13) > 0  0 # 0  
Blume, Emery, and Griffiths (14) > 0  > 0  0 
Mukamel  and Blume (m > 0  > 0  r  
Racz and Vicsek (16) < 0  3J p + 8J  
Antiferromagnetic Potts  model (17) < 0 3J 0 
Saito (Is) < 0  > 0  4:0 
Hubbard  (19) < 0  [KII < ]JI # 0  

atomic limit (no hopping term) can be reduced to the Hamiltonian (30) 
with interactions that are temperature dependent. 

We summarize some of these investigations in Table I (K2 = 0). 
In Fig. 1-5 we show typical phase diagrams for different domains of 

the parameters. We use the following convention: n denotes the number of 
DFC, d the number of equivalence classes (if n =  oe), crp the residual 
entropy of the class Gp; (~, of, and Y denote that the interaction q5 
satisfies, respectively, the completeness, the symmetry, or the factorization 
condition; on the solid lines the set of DFC is the union of the DFC on the 
two sides of the line; on the dashed lines n = o% d =  1, a > 0, and on the 
two sides of these lines numbers of classes are different; on the dotted lines 
n =  oe, ~ > 0 ,  and d is the same on both sides as well as on the line. 

h 

2 T ,/::> 
. . . .  ; . . . . .  

(a) 

Fig. 1. 

T 
t 

(b) 
Plots for Y<0 ,  K1 > - 3 J ,  K 2 = 0 .  The numbers  of DFC are indicated. At points A 
and B, d =  2, al = 0, o- 2 > 0, and the interaction is W, but neither 5 D nor ~ .  
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Although our results do not give information for those values of the 
parameters corresponding to the dashed lines, we expect that they 
correspond to the boundary ( T = 0 )  of a surface of second-order phase 
transition (as is the case for the antiferromagnetic Ising model). On the 
other hand, we expect that the dotted lines have no special significance at 
nonzero temperature. This last conjecture is supported by the solvable 
Griffiths model, (l~ where the same situation occurs, and by numerical 
analysis of the model described in Fig. 3. (2o) 

h 

"" I 

(8 8) _ _ _  2 (: ;). . 

B - - - i - - - ~  . . . . . .  

(a) 

(b) 

Fig. 2. Plots for J < 0, K 1 = -J ,  K 2 = 0. The numbers of DCF are indicated. At points A 
and B, d= 1, a>0. 
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Figu re s  1-4  are  h versus  # p lo t s  for  f ixed J <  0, K 2 = 0; the  p a r a m e t e r  

K1 changes  f r o m  one  f igure  to the  o ther .  T h e  phase  d i a g r a m s  a re  s y m m e t r i c  

w i th  respec t  to  the  t r a n s f o r m a t i o n  h ~ - h .  I n  Figs.  1-4, in the  n = 2 a reas  

there  are  two  D F C  re la ted  by t r a n s l a t i o n a l  s y m m e t r y .  A P e i e r l s - D o b r u s h i n  

h 

"~% 2 % 
, ,  ~o+~,, I (****) 

~ l..,- O! \ 
', , , C  

(gzS) 

J . . . . . . . . . .  

," " D 

" 2 , ,  J (::) 

- 2  (~; )  ~ 

( a )  

\ \  \ N  \ \ ,  h _ -- 

(b)  

Fig. 3. Plots for J <  0, d < Kz < - J ,  K2 = 0. The numbers of DFC are indicated. Along the 
dotted lines, d = 2, az = a2 > 0, and the interaction is ~, 5 ~, and ~,~. The h axis is drawn at the 
value p = -4K~. 
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argument, or the PS theory, shows the existence of at least two phases at 
T>0.  The volume of phase coexistence is enclosed by a surface; on the 
largest part of this surface one expects a second-order phase transition and 
the existence of a unique phase. In Figs. 1-3, on the solid lines the number 
of DFC is finite, The interaction /~x 2 splits the accidental degeneracy 

\ 

, 2 (o~) " ,C  
\ % ] . .~ . . . . . . . . .  

%% ," 

(g~) , B . .  - 2 ( : ; ) ~ ~  
ii I "', 

,. 2 (~_;) ," D I i 

, , ' "  I (--:) 

J 

( a )  

" \  ~ �9 . . . . ' ' " '  

(b) 

Fig. 4. Plots  for J <  0, K~ < J, /{2 = 0 with the numbers  of  D F C  are indicated, The h axis is 
drawn at the value # = 0. 
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Kz 

I z \ 
+0 

(~ ~ " - , ,  ~ 1 ~ 2  
"-.. w 2 

y - - k ,  .-r+ + ~  
I i 4 ~  ~+~ (~ I, (+S)(~176 

i ~ oiio+~ 
Ol~,O+! I 

(a) 

T 

/ 

I / 1 "  

I I / 

' / 2 

x,/ 

A B 
kL 

(b) 

T 

1 
1 

2 / ~ - 4  2 

(c) 

y- 

Fig. 5. Plots for J~>0, J + K ] < 0 ,  h = 0  the numbers of (a) classes and (b,c) phases. 
(b) K 2 =0, (c) K2>0. The symbol (~ ~) denotes the class of ground states such that on each 
unit square, the configuration is given by (6 ~), e = +1 or -1 .  
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between the DFCs s i - 0  and Isi[ = 1. Hence the PS theory predicts that 
there are surfaces of coexistence of two or three phases, which intersect the 
T =  0 plane in the solid lines. The slope of these coexistence surfaces with 
respect to the h-# plane varies with K1 and can be calculated by Slawny's 
theory, c4) We expect that the intersection between the coexistence surface 
and the surface of second-order phase transition corresponds to a multi- 
critical line that ends at points A and B (as is the case for the BEG 
model(14)). 

At the points A and B of Fig. 1, there are two classes: one class con- 
sists of the single DFC s i= 0, the other class contains all the DFC that 
exist on the incident dashed line. At these points, the interaction belongs to 
Z, but does not belong either to 5 p or Y and we can make no conclusions. 

At the points A and B of Fig. 2, there is just one class with 0  ̀> 0. It 
contains all configurations except those having ( - ,  - )  nearest neighbors 
(at A), or ( + ,  + )  nearest neighbors (at B); on the dotted line d =  1 and 
the DFC are defined by s i t  {0, 1} for all i (h >0).  

At the points A, B, C, D of Figs. 3 and 4 there is just one class with 
a > 0. Along the dotted lines d =  2, 0 1 ----= 0" 2 > 0 and the two classes are sym- 
metry-related. For instance, for h > 0 ,  s i=  1 on one sublattice and 
s ~  {0, - 1  } o n t h e  other, and the other class is obtained by translation. 
The interaction is cg, 5~, and ~ .  Using our extension of the Peierls 
argument, one sees that along the dotted lines the two-phase coexistence 
persists at T >  0. 

The use of our extension of the PS theory is best illustrated by Fig. 5. 
This presents a K2 versus p plot with fixed J >~ 0, J + K 1 < 0, and h = 0. For 
large, positive # or K2, n = 2 and the two ferromagnetic DFC are related 
by spin-reversal symmetry. The Peierls argument or PS theory proves a 
two-phase coexistence at T >  0. Another domain of two-phase coexistence 
appears in the d = 2 area bordered by the parallel solid lines. Here there are 
two symmetry-related classes, and the discussion of Section 4 shows the 
phase coexistence at T > 0. At low temperatures and for K2 > 0 this domain 
is bordered by surfaces of first-order phase transition. Indeed, along the 
solid lines d-- 3 and 4 the interaction is a factorizable C-potential, and #x~ 
splits the degeneracy between low- and high-density classes. The extension 
of the PS theory (Section 5) shows that we have a three-phase and a four- 
phase coexistence surface at the low-# and the high-# sides, respectively. 
(Slawny's method to establish the slope of these surfaces to the T = 0 plane 
can be adopted and will be discussed elsewhere.) We expect that there is a 
piece of second-order phase transition surface between them, so that the 
intersections yield two multicritical lines. These lines presumably end up at 
A and B in the T = 0  ( K 2 - k t )  plane (cf. Fig. 5b)..A tentative T-# plot for 
K2 > 0 is shown in Fig. 5c. On the d = 2 solid line of Fig. 5a the interaction 
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satisfies the symmet ry  cond i t ion  ( th rough  spin flip), a l though  it does not  
be long to Y .  (In one class, s i c { O ,  1} wi thout  nn and  nnn zeros.)  The  
ex tended  Peierls  a rgumen t  shows tha t  the two-phase  coexistence persists  
for T >  0 all a long  the line. There  m a y  or  m a y  no t  be a phase  b o u n d a r y  
here. O n  the low-# side of  this line n =  c~, d = 2 ,  but  O"1=0"2=0, and  our  
m e t h o d  is no t  conclusive.  The  same r emark  holds  for the d =  4 d o m a i n  and  
the dashed  lines: since n = c~ and  ~r = 0, the in te rac t ion  is no t  a C-potent iaL 
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